7 research outputs found

    Bayesian spectral modeling for multiple time series

    Get PDF
    We develop a novel Bayesian modeling approach to spectral density estimation for multiple time series. The log-periodogram distribution for each series is modeled as a mixture of Gaussian distributions with frequency-dependent weights and mean functions. The implied model for the log-spectral density is a mixture of linear mean functions with frequency-dependent weights. The mixture weights are built through successive differences of a logit-normal distribution function with frequency-dependent parameters. Building from the construction for a single spectral density, we develop a hierarchical extension for multiple time series. Specifically, we set the mean functions to be common to all spectral densities and make the weights specific to the time series through the parameters of the logit-normal distribution. In addition to accommodating flexible spectral density shapes, a practically important feature of the proposed formulation is that it allows for ready posterior simulation through a Gibbs sampler with closed form full conditional distributions for all model parameters. The modeling approach is illustrated with simulated datasets, and used for spectral analysis of multichannel electroencephalographic recordings (EEGs), which provides a key motivating application for the proposed methodology

    Triple the gamma -- A unifying shrinkage prior for variance and variable selection in sparse state space and TVP models

    Get PDF
    Time-varying parameter (TVP) models are very flexible in capturing gradual changes in the effect of a predictor on the outcome variable. However, in particular when the number of predictors is large, there is a known risk of overfitting and poor predictive performance, since the effect of some predictors is constant over time. We propose a prior for variance shrinkage in TVP models, called triple gamma. The triple gamma prior encompasses a number of priors that have been suggested previously, such as the Bayesian lasso, the double gamma prior and the Horseshoe prior. We present the desirable properties of such a prior and its relationship to Bayesian Model Averaging for variance selection. The features of the triple gamma prior are then illustrated in the context of time varying parameter vector autoregressive models, both for simulated datasets and for a series of macroeconomics variables in the Euro Area

    Shrinkage in the Time-Varying Parameter Model Framework Using the R Package shrinkTVP

    Get PDF
    Time-varying parameter (TVP) models are widely used in time series analysis to flexibly deal with processes which gradually change over time. However, the risk of overfitting in TVP models is well known. This issue can be dealt with using appropriate global-local shrinkage priors, which pull time-varying parameters towards static ones. In this paper, we introduce the R package shrinkTVP (Knaus, Bitto-Nemling, Cadonna, and Fr\"uhwirth-Schnatter 2019), which provides a fully Bayesian implementation of shrinkage priors for TVP models, taking advantage of recent developments in the literature, in particular that of Bitto and Fr\"uhwirth-Schnatter (2019). The package shrinkTVP allows for posterior simulation of the parameters through an efficient Markov Chain Monte Carlo (MCMC) scheme. Moreover, summary and visualization methods, as well as the possibility of assessing predictive performance through log predictive density scores (LPDSs), are provided. The computationally intensive tasks have been implemented in C++ and interfaced with R. The paper includes a brief overview of the models and shrinkage priors implemented in the package. Furthermore, core functionalities are illustrated, both with simulated and real data

    Bayesian modeling and clustering for spatio-temporal areal data: An application to Italian unemployment

    Full text link
    Spatio-temporal areal data can be seen as a collection of time series which are spatially correlated according to a specific neighboring structure. Incorporating the temporal and spatial dimension into a statistical model poses challenges regarding the underlying theoretical framework as well as the implementation of efficient computational methods. We propose to include spatio-temporal random effects using a conditional autoregressive prior, where the temporal correlation is modeled through an autoregressive mean decomposition and the spatial correlation by the precision matrix inheriting the neighboring structure. Their joint distribution constitutes a Gaussian Markov random field, whose sparse precision matrix enables the usage of efficient sampling algorithms. We cluster the areal units using a nonparametric prior, thereby learning latent partitions of the areal units. The performance of the model is assessed via an application to study regional unemployment patterns in Italy. When compared to other spatial and spatio-temporal competitors, the proposed model shows more precise estimates and the additional information obtained from the clustering allows for an extended economic interpretation of the unemployment rates of the Italian provinces

    Posterior predictive model checking using formal methods in a spatio-temporal model

    Full text link
    We propose an interdisciplinary framework, Bayesian formal predictive model checking (Bayes FPMC), which combines Bayesian predictive inference, a well established tool in statistics, with formal verification methods rooting in the computer science community. Bayesian predictive inference allows for coherently incorporating uncertainty about unknown quantities by making use of methods or models that produce predictive distributions which in turn inform decision problems. By formalizing these problems and the corresponding properties, we can use spatio-temporal reach and escape logic to probabilistically assess their satisfaction. This way, competing models can directly be ranked according to how well they solve the actual problem at hand. The approach is illustrated on an urban mobility application, where the crowdedness in the center of Milan is proxied by aggregated mobile phone traffic data. We specify several desirable spatio-temporal properties related to city crowdedness such as a fault tolerant network or the reachability of hospitals. After verifying these properties on draws from the posterior predictive distributions, we compare several spatio-temporal Bayesian models based on their overall and property-based predictive performance
    corecore